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Abstract

A method to form glycosyl linkages between nitrogen-containing heterocycles and appropriately
protected furanoses is described. The method is highly beta-selective, operationally simple, and utilizes
readily available reagents making the process amenable to scaleup. Representative examples of coupling
between chlorofuranoses and purines or pyrrolopyrimidines are described. © 2000 Published by Elsevier
Science Ltd.

In the course of our research, we required a reliable method to form a glycosyl linkage
between novel pyrrolopyrimidines and appropriately protected erythrose and deoxyribose
sugars. A common method for glycosyl bond formation involves the use of Lewis acid promoted
coupling, typically with the aid of an acyl-protected hydroxyl at C2 which provides neighboring-
group participation to achieve beta selectivity. Unfortunately, pyrrolopyrimidines often fail to
react in the desired fashion in such Lewis acid type reactions.1 Previously published work on
related systems has centered on the displacement of anomeric halides by the anion of the
heterocycle. Typically, the anion is formed from NaH2 or under phase-transfer conditions
(KOH, TDA-1).3 This method consists of direct displacement of an anomeric halide, with the
hydroxyls at the 2 and 3 positions of the furanose typically protected as an acetonide. A key
element of this method (Scheme 1) is that the anomeric configuration is inverted in the coupling;
to obtain the desired beta configuration one must utilize the alpha-chlorofuranose.

Scheme 1.
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This anionic method was used successfully for the synthesis of the initial quantities of our
desired product using 2,3-O-isopropylidene-a-D-erythrofuranosyl chloride. One concern was
that the formation of the a-chloride required special conditions.4 Of greater concern for our
purposes was that the a-chloride was thermally unstable, readily isomerizing to the thermo-
dynamically more stable b configuration over a short time frame (generally over a couple of
hours at rt). The lack of robustness in this coupling prevented use of this method to generate
large quantities of desired pharmaceutical compounds, and therefore we searched for an
alternate method.

Previous work had examined the use of the configurationally stable b-chloride with limited
success. Goto et. al. utilized the anionic method (NaH) with a pyrrolopyrimidine and the
b-chloride derived from 2,3-O-isopropylidene-5-O-trityl-D-ribofuranose. By using halide addi-
tives,5 a double displacement mechanism was accessed which increased the b:a ratio from 1:3
(without additive) to 2:1 by the addition of NaBr in DMF in the most selective example.6

Although this method proves an important concept, we hoped to obtain a higher diastereoselec-
tivity in our process.

Our research was aimed at solvating the chloride as a means of activation, in hopes of
developing reaction conditions that would allow a reliable and selective condensation starting
with b-chlorofuranoses.7 In the course of these studies, we discovered a rather remarkable set of
reaction conditions which significantly extends the anionic glycosylation methodology. The
stable, crystalline b-chloride of 2,3-O-isopropylidene erythrose8 (2) was coupled with a
pyrrolopyrimidine of general structure 1 using DMSO as the solvent and NaOtBu9 as the base
(Scheme 2). Under these conditions the desired b-glycosylation product can be formed with
exceptional b:a selectivity.

Scheme 2.

DMSO appears to be a key component that serves to efficiently solvate the anomeric chloride.
We believe the reaction proceeds through an intermediate sulfoxonium species, which can
rapidly isomerize through its a and b forms via solvent displacement.10 Such a species would be
an intermediate in a Kornblum-type oxidation, however lactone is not seen as a by-product as
the use of t-butoxide as base shuts down this potential oxidation pathway.11 An important
aspect of the reaction is that the starting ratio of a and b chlorides does not affect the
b-selectivity of the product.12 The stereoselectivity of the product is thus controlled solely by the
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stereochemistry of the 2,3-O-isopropylidene group. In the furanoses used in this study, the
b-chlorofuranoses are the thermodynamically more favored, and thus much simpler to prepare.
However, in systems which might form mixtures at the anomeric center, the crude sugars can be
used without separation of isomers.

To exemplify the power of this methodology, we have carried out this reaction using different
purines and pyrrolopyrimidines as shown in Table 1.13 Note that the selectivities are highest with
the erythrose substrates (entries 1–4). The deoxyribose (entries 5–6) and protected ribose
substrates (entries 7–8) also offer high levels of selectivity, suggesting the isopropylidene remains
the overriding stereochemical determinant in these transformations.

Table 1

From a practical standpoint, the reagents and substrates are readily available and the process
is operationally simple.14 The chlorosugars are formed from the lactols under standard condi-
tions,8 and any ratio of a and b chlorofuranose anomers can be used. Both pyrrolopyrimidines
and purines have been examined as the heterocyclic partner as the limiting reagent. Due to side
reactions that take place on the chlorofuranoses, this reagent is used in excess (typically 1.5–2
equiv.). One further caveat is that under the base promoted reaction conditions, glycosylation at
nitrogens other than the desired N7 of the heterocycle can take place, reducing the yield of the
desired isomer. In such cases, we have found that optimization of the base counterion and
cosolvent15 can influence such ratios, but were not optimized for the examples in Table 1.
Further details on this reaction and its use as a scalable process will be reported in due course.
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